

MINET Think Tank Event C Measurement uncertainty when measuring the impossible Rome, October 9-10, 2008

UNCERTAINTY SOURCES

Giovanni Battista Rossi Università degli Studi di Genova, DIMEC

Proposed approach

- Use foundational (i.e. discipline independent) arguments only
- Check whether this may apply to Mtl problems also

Two (main) foundational aspects

- What is the meaning of measurement?
 - The measurement scale
- How do we measure?
 - The measurement process

The meaning of measurement/ the measurement scale

- To explain the meaning of measurement we need to refer to a more primitive notion: the notion of empirical relations
- Measurement allows the description of characteristics of objects by numbers in such a way as to reproduce in a numerical domain empirical relations
- For example as far as order relations are involved, the representation satisfies

$$a > b \Leftrightarrow m(a) \ge m(b)$$

Is a deterministic description of empirical relations satisfactory?

- Think to any measurable characteristic of your interest, that includes empirical order
- Given any two objects, a, b, is it always possible to definitely establish whether a > b or a ~ b or a ≺ b holds?

Uncertainty in empirical relations 1

If a and b are very "close" to each other, their "difference" is comparable with the "repeatability" of the comparator, and we repeat the comparison more times, we may observe sometimes a > b , some other a ~ b and some other even a < b

Uncertainty in empirical relations 2

If we have two equally reliable comparators,
 C and D, it may be that
 with C we obtain

$$a \succ_{\mathcal{C}} b$$

whilst with D we obtain

$$a \sim_D b$$

Possible interpretations

- Either a > b or a ~ b is true and one of the two comparators is wrong but we do not know which one
- The objects interact with the comparators in such a way that there are state changes in the two comparisons, but we are unable to define there states outside these comparisons

Probability as a logic for measurement

 Both cases above may be treated in probabilistic terms, by considering

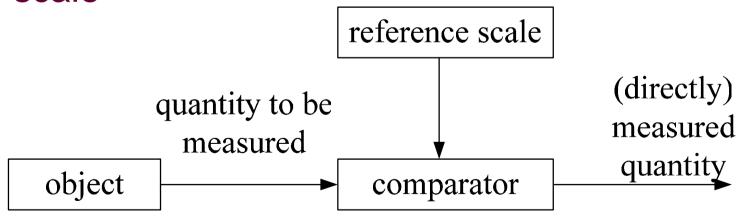
an uncertain statement and considering its probability

instead of its truth.

Probabilistic representation for order structures

The representation theorem may be restated as

$$P(a > b) = P(m(a) \ge m(b))$$



The measurement process

How do we measure?

- we need a reference scale to be devised first
- and a way for comparing (directly or indirectly) unknown objects with the reference scale

Measurement process and measuring system

Measuring system

an empirical system that is able to interact with objects carrying the quantity under investigation and to produce, as result of the interaction, **signs**, on the basis of which it is possible to assign a value to the object to measure

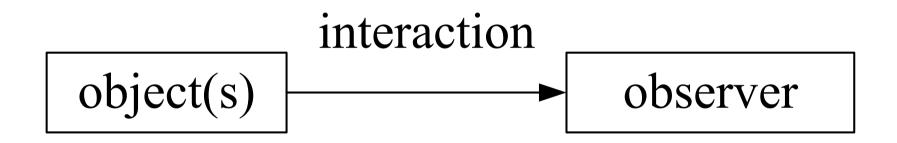
- Think to any measurable characteristic of your interest
- Given any object a is it always possible to definitely assign a measurement value \hat{x}

$$\hat{x} = \varphi(a)$$

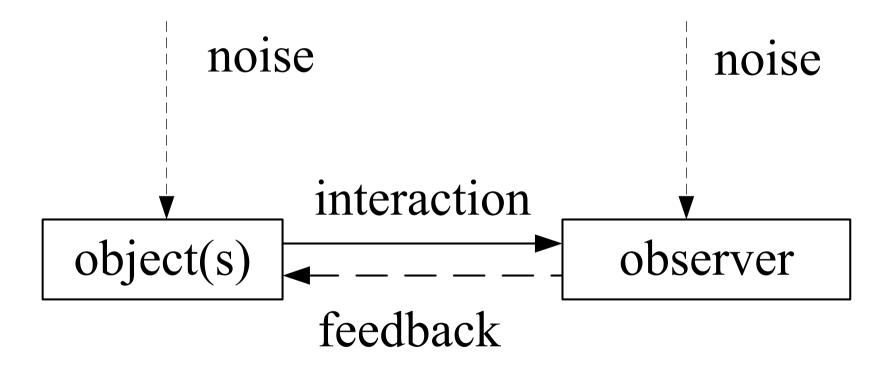
to it?

Uncertainty in the measurement process

- If we repeat the measurement of the same object more times in conditions which are equivalent for the experimenter, we may obtain different values, \hat{x}_1 , \hat{x}_2 ,...
- If we measure the same objects through two equally reliable measurement processes, *M* and *N*, we may obtain (repeatedly) two different values,


$$\hat{\mathbf{x}}_{M} = \boldsymbol{\varphi}_{M}(\mathbf{a}), \ \hat{\mathbf{x}}_{N} = \boldsymbol{\varphi}_{N}(\mathbf{a})$$

Again there may be different interpretations of these evidences (not to be mentioned now)



Information flux between the object (s) and the observer (comparator or measuring system) – ideal case

Information flux between the object (s) and the observer (comparator or measuring system) – Real case

A taxonomy of uncertainty sources

THREE MAIN CONCEPTUAL "COORDINATES"

- Related to empirical relations or to the measurement process
- Random variations versus systematic effects
- Information flux: object (s), observer or interaction